Advertisements
Advertisements
Question
Show that a1, a2,..., an... form an AP where an is defined as below:
an = 3 + 4n
Also, find the sum of the first 15 terms.
Solution
an = 3 + 4n
a1 = 3 + 4(1) = 7
a2 = 3 + 4(2) = 3 + 8 = 11
a3 = 3 + 4(3) = 3 + 12 = 15
a4 = 3 + 4(4) = 3 + 16 = 19
It can be observed that
a2 − a1 = 11 − 7 = 4
a3 − a2 = 15 − 11 = 4
a4 − a3 = 19 − 15 = 4
i.e., ak + 1 − ak is same every time. Therefore, this is an AP with common difference as 4 and first term as 7.
`S_n = n/2 [2a + (n - 1)d]`
`S_15 = 15/2 [2(7) + (15 - 1) × 4]`
= `15/2 [(14) + 56]`
= `15/2 (70)`
= 15 × 35
= 525
APPEARS IN
RELATED QUESTIONS
The sum of the first p, q, r terms of an A.P. are a, b, c respectively. Show that `\frac { a }{ p } (q – r) + \frac { b }{ q } (r – p) + \frac { c }{ r } (p – q) = 0`
Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the nth week, her week, her weekly savings become Rs 20.75, find n.
In a school, students thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant will be the same as the class, in which they are studying, e.g., a section of class I will plant 1 tree, a section of class II will plant 2 trees, and so on till class XII. There are three sections of each class. How many trees will be planted by the students?
In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato and other potatoes are placed 3 m apart in a straight line. There are ten potatoes in the line.
A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
[Hint: to pick up the first potato and the second potato, the total distance (in metres) run by a competitor is 2 × 5 + 2 ×(5 + 3)]
Find the sum of the following arithmetic progressions: 50, 46, 42, ... to 10 terms
Find the sum of first 22 terms of an A.P. in which d = 22 and a = 149.
The 4th term of an AP is zero. Prove that its 25th term is triple its 11th term.
Divide 24 in three parts such that they are in AP and their product is 440.
If the sum of first m terms of an AP is ( 2m2 + 3m) then what is its second term?
Draw a triangle PQR in which QR = 6 cm, PQ = 5 cm and times the corresponding sides of ΔPQR?
Write an A.P. whose first term is a and common difference is d in the following.
Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14.
(Assume the four consecutive terms in A.P. are a – d, a, a + d, a +2d)
Rs 1000 is invested at 10 percent simple interest. Check at the end of every year if the total interest amount is in A.P. If this is an A.P. then find interest amount after 20 years. For this complete the following activity.
A piece of equipment cost a certain factory Rs 60,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
Which term of the sequence 114, 109, 104, ... is the first negative term?
If the sum of n terms of an A.P. is 3n2 + 5n then which of its terms is 164?
Suppose three parts of 207 are (a − d), a , (a + d) such that , (a + d) >a > (a − d).
The first term of an AP is –5 and the last term is 45. If the sum of the terms of the AP is 120, then find the number of terms and the common difference.
Complete the following activity to find the 19th term of an A.P. 7, 13, 19, 25, ........ :
Activity:
Given A.P. : 7, 13, 19, 25, ..........
Here first term a = 7; t19 = ?
tn + a + `(square)`d .........(formula)
∴ t19 = 7 + (19 – 1) `square`
∴ t19 = 7 + `square`
∴ t19 = `square`
In a ‘Mahila Bachat Gat’, Kavita invested from the first day of month ₹ 20 on first day, ₹ 40 on second day and ₹ 60 on third day. If she saves like this, then what would be her total savings in the month of February 2020?