Advertisements
Advertisements
Question
Show that `(2 + "i"sqrt(3))^10 - (2 - "i" sqrt(3))^10` is purely imaginary
Solution
`(20 - 5"i")/(7 - 6"i") = (20 - 5"i")/(7 - 6"i") xx (7 + 6"i")/(7 + 6"i")`
= `(140 + 120"I" - 35"I" + 30)/(49 + 36)`
= `(10 + 85"I")/85`
= `(85(2 + "I"))/85`
= (2 + I)
z = `((19 - 7"i")/(9 + "i"))^12 + ((20 - 5"i")/(7 - 6"i"))^12`
= `(2 - "i")^2 + (2 + "i")^12`
`bar(z) = bar((2 - "i")^12 + (2 + "i")^12)`
= `bar((2 - "i")^12) + bar((2 + "i"))^12`
= `(2 + "i")^12 + (2 - "i")^12`
`bar(z)` = z
⇒ z is purely real.
Let z = `(2 + "i" sqrt(3))^10 - (2 - "i" sqrt(3))^10`
`bar(z) = bar((2 + "i" sqrt(3))^10) - bar((2 - "i" sqrt(3))^10)`
= `bar((2 + "i" sqrt(3))^10 - (2 - "i" sqrt(3))^10)`
= `(2 - "i" sqrt(3))^10 - (2 + "i" sqrt(3))^10`
= `[(2 + "i" sqrt(3))^10 - (2 - "i" sqrt(3))^10]`
`bar(z)` = z
APPEARS IN
RELATED QUESTIONS
Write the following in the rectangular form:
`(10 - 5"i")/(6 + 2"i")`
Write the following in the rectangular form:
`bar(3"i") + 1/(2 - "i")`
If z = x + iy, find the following in rectangular form:
`"Re"(1/z)`
If z = x + iy, find the following in rectangular form:
`"Re"("i"barz)`
If z = x + iy, find the following in rectangular form:
`"Im"(3z + 4bar(z) - 4"i")`
If z1 = 2 – i and z2 = – 4 + 3i, find the inverse of z1, z2 and `("z"_1)/("z"_2)`
Prove the following properties:
z is real if and only if z = `bar(z)`
Prove the following properties:
Re(z) = `(z + bar(z))/2` and Im(z) = `(z - bar(z))/(2"i")`
Find the least value of the positive integer n for which `(sqrt(3) + "i")^"n"` real
Find the least value of the positive integer n for which `(sqrt(3) + "i")^"n"` purely imaginary
Show that `((19 - 7"i")/(9 + "i"))^12 + ((20 - 5"i")/(7 - 6"i"))^12` is real
Choose the correct alternative:
The conjugate of a complex number is `1/(" - 2)`. Then, the complex number is