English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Show that ii(32+i2)5+(32-i2)5=-3 - Mathematics

Advertisements
Advertisements

Question

Show that `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5 = - sqrt(3)`

Sum

Solution

`(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5`

Fnding the polar form of `sqrt(3)/2 + "i"/2`

Let `sqrt(3)/2 + "i"/2` = r(cosθ + i sinθ)

r cos θ = `sqrt(3)/2` (+ ve)

r cos θ = `1/2` (+ ve)

r2cos2θ + r2sin2θ = `3/4 + 1/4` = 1

r2 = 1

r = 1

Since, cos θ and sin θ are + ve, θ lies in I quadrant

Now, cos θ =  `sqrt(3)/2`

sin θ = `1/2`

Argument θ = `pi/6`

∴ Polar form `sqrt(3)/2 + "i"/2 = (cos  pi/6 + "i" sin  pi/6)`

And `sqrt(3)/2 - "i"/2 = cos  pi/6 - "i" sin  pi/6`

Now `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5`

= `(cos  pi/6 + "i" sin  pi/6)^5 + (cos  pi/6 - "i" sin  pi/6)^5`

By Using de Moivre's theorem

= `cos  (5pi)/6 + "i" sin  (5pi)/6 + cos  (5pi)/6 - "i" sin  (5pi)/6`

= `2 cos  (5pi)/6`

= `2 cos  (pi - pi/6)`

= `- 2 cos  pi/6`

= `- 2 (sqrt(3)/2)`

= `- sqrt(3)`

shaalaa.com
de Moivre’s Theorem and Its Applications
  Is there an error in this question or solution?
Chapter 2: Complex Numbers - Exercise 2.8 [Page 92]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 2 Complex Numbers
Exercise 2.8 | Q 2 | Page 92

RELATED QUESTIONS

If to ω ≠ 1 is a cube root of unity, then show that `("a" + "b"omega + "c"omega^2)/("b" + "c"omega + "a"omega^2) + ("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "a"omega^2)` = – 1


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)` 


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x^"m" y^"n" + 1/(x^"m" y^"n")` = 2 cos(mα – nβ)


If 2cos α = `x + 1/x` and 2 cos β = `y + 1/x`, show that `x^"m"/y^"n" - y^"n"/x^"m"` = 2i sin(mα – nβ)


If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2 


Find the value of `sum_("k" = 1)^8 (cos  (2"k"pi)/9 + "i" sin  (2"kpi)/9)`


If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128


If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1


If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`


If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(3pi)/3`


Choose the correct alternative:

If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals


Choose the correct alternative:

The product of all four values of `(cos  pi/3 + "i" sin  pi/3)^(3/4)` is


Choose the correct alternative:

If ω ≠ 1 is a cubic root of unity and `|(1, 1, 1),(1, - omega^2 - 1, omega^2),(1, omega^2, omega^7)|` = 3k, then k is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×