Advertisements
Advertisements
प्रश्न
Show that `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5 = - sqrt(3)`
उत्तर
`(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5`
Fnding the polar form of `sqrt(3)/2 + "i"/2`
Let `sqrt(3)/2 + "i"/2` = r(cosθ + i sinθ)
r cos θ = `sqrt(3)/2` (+ ve)
r cos θ = `1/2` (+ ve)
r2cos2θ + r2sin2θ = `3/4 + 1/4` = 1
r2 = 1
r = 1
Since, cos θ and sin θ are + ve, θ lies in I quadrant
Now, cos θ = `sqrt(3)/2`
sin θ = `1/2`
Argument θ = `pi/6`
∴ Polar form `sqrt(3)/2 + "i"/2 = (cos pi/6 + "i" sin pi/6)`
And `sqrt(3)/2 - "i"/2 = cos pi/6 - "i" sin pi/6`
Now `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5`
= `(cos pi/6 + "i" sin pi/6)^5 + (cos pi/6 - "i" sin pi/6)^5`
By Using de Moivre's theorem
= `cos (5pi)/6 + "i" sin (5pi)/6 + cos (5pi)/6 - "i" sin (5pi)/6`
= `2 cos (5pi)/6`
= `2 cos (pi - pi/6)`
= `- 2 cos pi/6`
= `- 2 (sqrt(3)/2)`
= `- sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find the value of `[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/10)]^10`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)`
If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2
Find the value of `sum_("k" = 1)^8 (cos (2"k"pi)/9 + "i" sin (2"kpi)/9)`
If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128
If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(2pi)/3`
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(3pi)/3`
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals
Choose the correct alternative:
The product of all four values of `(cos pi/3 + "i" sin pi/3)^(3/4)` is
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and `|(1, 1, 1),(1, - omega^2 - 1, omega^2),(1, omega^2, omega^7)|` = 3k, then k is equal to
Choose the correct alternative:
If ω = `cis (2pi)/3`, then the number of distinct roots of `|(z + 1, omega, omega^2),(omega, z + omega^2, 1),(omega^2, 1, z + omega)|` = 0