Advertisements
Advertisements
प्रश्न
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`
उत्तर
Given 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`
Simplifying x² – 2x cos α + 1 = 0
Using x = `(- "b" +- sqrt("b"^2 - 4"ac"))/(2"a")`
Solving x = `(2 cos alpha +- sqrt(4 cos^2 alpha - 4))/2`
= `(2 cos alpha +- "i" 2 sin alpha)/2`
= `cosalpha +- "i" sin alpha`
if x = cos α + i sin α, then `1/x` = cos α – i sin α
Similarly y = cos β + i sin β and `1/y` = cos β – i sin β
`x/y + y/x = 2 cos (alpha - beta)`
`x/y = (cos alpha + "i "sin alpha)/(cos beta + "i "sin beta)`
= `cos(alpha - beta) + "i"sin(alpha - beta)`
`y/x = cos(alpha - beta) - "i"sin(alpha - beta)`
∴ `x/y + y/x = cos(alpha - beta) + "i" sin(alpha - beta) + cos(alpha - beta) - "i" sin (alpha - beta)`
= `2 cos (alpha - beta)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If to ω ≠ 1 is a cube root of unity, then show that `("a" + "b"omega + "c"omega^2)/("b" + "c"omega + "a"omega^2) + ("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "a"omega^2)` = – 1
Show that `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5 = - sqrt(3)`
Find the value of `[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/10)]^10`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x^"m" y^"n" + 1/(x^"m" y^"n")` = 2 cos(mα – nβ)
Solve the equation z3 + 27 = 0
If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2
Find the value of `sum_("k" = 1)^8 (cos (2"k"pi)/9 + "i" sin (2"kpi)/9)`
If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128
If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(2pi)/3`
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals
Choose the correct alternative:
The product of all four values of `(cos pi/3 + "i" sin pi/3)^(3/4)` is
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and `|(1, 1, 1),(1, - omega^2 - 1, omega^2),(1, omega^2, omega^7)|` = 3k, then k is equal to
Choose the correct alternative:
If ω = `cis (2pi)/3`, then the number of distinct roots of `|(z + 1, omega, omega^2),(omega, z + omega^2, 1),(omega^2, 1, z + omega)|` = 0