Advertisements
Advertisements
प्रश्न
Solve the equation z3 + 27 = 0
उत्तर
z3 + 27 = 0
⇒ z3 = – 27
⇒ z3 = `3^3(- 1)`
⇒ z = `3(-1)^(1/3)`
z = `3[cos(2"k"pi + pi) + "i" sin 2"k"pi + pi]^(1/3)`
= `3[cos((2"k"pi + pi)/3) + "i" sin((2"k"pi + pi)/3)]`
k = 0, 1, 2
k = 0, z = `3[cos pi/3 + "i" sin pi/3]`
k = 1, z = `3[cos (3pi)/3 + "i"sin (3pi)/3]` = – 3
k = 2, z = `3[cos (5pi)/3 + "i" sin (5pi)/3]`
APPEARS IN
संबंधित प्रश्न
If to ω ≠ 1 is a cube root of unity, then show that `("a" + "b"omega + "c"omega^2)/("b" + "c"omega + "a"omega^2) + ("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "a"omega^2)` = – 1
Show that `(sqrt(3)/2 + "i"/2)^5 + (sqrt(3)/2 - "i"/2)^5 = - sqrt(3)`
Find the value of `[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/10)]^10`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x^"m" y^"n" + 1/(x^"m" y^"n")` = 2 cos(mα – nβ)
If 2cos α = `x + 1/x` and 2 cos β = `y + 1/x`, show that `x^"m"/y^"n" - y^"n"/x^"m"` = 2i sin(mα – nβ)
If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2
If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128
If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(3pi)/3`
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals
Choose the correct alternative:
The product of all four values of `(cos pi/3 + "i" sin pi/3)^(3/4)` is
Choose the correct alternative:
If ω = `cis (2pi)/3`, then the number of distinct roots of `|(z + 1, omega, omega^2),(omega, z + omega^2, 1),(omega^2, 1, z + omega)|` = 0