मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2 - Mathematics

Advertisements
Advertisements

प्रश्न

If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2 

बेरीज

उत्तर

Given ω ≠ 1 is a active root of unity

(z – 1)3 + 8 = 0

(z – 1)3 = – 8

z – 1 = `(- 8)^(1/3) (1)^(1/3)`

= (– 2)(1, ω, ω2)

z – 1 = (– 2, – 2ω, – 2ω2)

= z – 1 = – 2

z = – 2 + 1 = – 1

z – 1 = – 2ω

z = 1 – 2ω

z – 1 = – 2ω2

z = 1 – 2ω2

shaalaa.com
de Moivre’s Theorem and Its Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.8 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.8 | Q 6 | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×