मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the value of ii[1+sin π10+icos π101+sin π10-icos π10]10 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `[(1 + sin  pi/10 + "i" cos  pi/10)/(1 + sin  pi/10 - "i" cos  pi/10)]^10`

बेरीज

उत्तर

`[(1 + sin  pi/10 + "i" cos  pi/10)/(1 + sin  pi/10 - "i" cos  pi/10)]^10`

= `[(1 + cos (pi/2 - pi/10) + "i" sin(pi/2 - pi/10))/(1 + cos (pi/2 - pi/10) - "i" sin (pi/2 - pi/10))]^10`

= `[(1 + cos  (2pi)/5 + "i" sin  (2pi)/5)/(1 + cos  (2pi)/5 - "i" sin  (2i)/5)]^10`

= `[(2cos^2  ((2pi)/5)/2 + "i" 2 sin  ((2pi)/5)/2 * cos  ((2pi)/5)/2)/(2 cos^2  ((2pi)/5)/2 - "i" 2 sin  ((2pi)/5)/2 * cos  ((2pi)/5)/2)]^10`

= `[(cos  pi/5 + "i" sin  pi/5)/(cos  pi/5 - "i" sin  pi/5)]^10`

= `[(cos  pi/5 + "i" sin  pi/5)/(cos  ((- pi)/5)  + "i" sin  ( - pi/5))]^10`

= `[cos (pi/5 + pi/5) + "i" sin (pi/5  pi/5)]^10`

= `[cos (2pi)/5 + "i" sin  (2pi)/5]^10`

= `cos 10 ((2pi)/5) + "i" sin 10 ((2pi)/5)`

= `cos 4pi + "i" sin 4pi`  ....[∵ By de Moivre's theorem]

= 1 + i(0)

= 1

Aliter method:

`[(1 + sin  pi/10 + "i" cos  pi/10)/(1 + sin  pi/10 - "i" cos  pi/0)]^10`

Letz = `sin  pi/10 + "i" cos  pi/10`

`1/z = sin  pi/10 - "i" cos  pi/10`

`[(1 + sin  pi/10 + "i" cos  pi/10)/(1 + sin  pi/10 - "i" cos  pi/0)]^10 = [(1 + z)/(1 + 1/z)]`

= `[((1 + z))/((z + 1)) * z]^10`

= z10

= `[sin  pi10 + "i"  cos  pi/10]^10`

= `[cos(pi/2 - pi/10) + "i" sin(pi/2 - pi/10)]^10`

= `[cos  (4pi)/10 + "i" sin  (4pi)/10]^10`

= `cos  (4pi)/10 (10) + "i" sin  (4pi)/10 (10)]`

= `cos 4pi + "i" sin 4pi`  ......[∵ By de Moivre's theorem]

= 1 + i(0)

= 1

shaalaa.com
de Moivre’s Theorem and Its Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.8 [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.8 | Q 3 | पृष्ठ ९२

संबंधित प्रश्‍न

If to ω ≠ 1 is a cube root of unity, then show that `("a" + "b"omega + "c"omega^2)/("b" + "c"omega + "a"omega^2) + ("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "a"omega^2)` = – 1


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)` 


If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x^"m" y^"n" + 1/(x^"m" y^"n")` = 2 cos(mα – nβ)


Solve the equation z3 + 27 = 0


If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2 


Find the value of `sum_("k" = 1)^8 (cos  (2"k"pi)/9 + "i" sin  (2"kpi)/9)`


If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128


If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1


If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`


If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(2pi)/3`


Choose the correct alternative:

If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals


Choose the correct alternative:

The product of all four values of `(cos  pi/3 + "i" sin  pi/3)^(3/4)` is


Choose the correct alternative:

If ω ≠ 1 is a cubic root of unity and `|(1, 1, 1),(1, - omega^2 - 1, omega^2),(1, omega^2, omega^7)|` = 3k, then k is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×