Advertisements
Advertisements
प्रश्न
Find the value of `[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/10)]^10`
उत्तर
`[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/10)]^10`
= `[(1 + cos (pi/2 - pi/10) + "i" sin(pi/2 - pi/10))/(1 + cos (pi/2 - pi/10) - "i" sin (pi/2 - pi/10))]^10`
= `[(1 + cos (2pi)/5 + "i" sin (2pi)/5)/(1 + cos (2pi)/5 - "i" sin (2i)/5)]^10`
= `[(2cos^2 ((2pi)/5)/2 + "i" 2 sin ((2pi)/5)/2 * cos ((2pi)/5)/2)/(2 cos^2 ((2pi)/5)/2 - "i" 2 sin ((2pi)/5)/2 * cos ((2pi)/5)/2)]^10`
= `[(cos pi/5 + "i" sin pi/5)/(cos pi/5 - "i" sin pi/5)]^10`
= `[(cos pi/5 + "i" sin pi/5)/(cos ((- pi)/5) + "i" sin ( - pi/5))]^10`
= `[cos (pi/5 + pi/5) + "i" sin (pi/5 pi/5)]^10`
= `[cos (2pi)/5 + "i" sin (2pi)/5]^10`
= `cos 10 ((2pi)/5) + "i" sin 10 ((2pi)/5)`
= `cos 4pi + "i" sin 4pi` ....[∵ By de Moivre's theorem]
= 1 + i(0)
= 1
Aliter method:
`[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/0)]^10`
Letz = `sin pi/10 + "i" cos pi/10`
`1/z = sin pi/10 - "i" cos pi/10`
`[(1 + sin pi/10 + "i" cos pi/10)/(1 + sin pi/10 - "i" cos pi/0)]^10 = [(1 + z)/(1 + 1/z)]`
= `[((1 + z))/((z + 1)) * z]^10`
= z10
= `[sin pi10 + "i" cos pi/10]^10`
= `[cos(pi/2 - pi/10) + "i" sin(pi/2 - pi/10)]^10`
= `[cos (4pi)/10 + "i" sin (4pi)/10]^10`
= `cos (4pi)/10 (10) + "i" sin (4pi)/10 (10)]`
= `cos 4pi + "i" sin 4pi` ......[∵ By de Moivre's theorem]
= 1 + i(0)
= 1
APPEARS IN
संबंधित प्रश्न
If to ω ≠ 1 is a cube root of unity, then show that `("a" + "b"omega + "c"omega^2)/("b" + "c"omega + "a"omega^2) + ("a" + "b"omega + "c"omega^2)/("c" + "a"omega + "a"omega^2)` = – 1
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x/y + y/x = 2cos(alpha − beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `xy - 1/xy = 2"i" sin(alpha + beta)`
If 2 cos α = `x + 1/x` and 2 cos β = `y + 1/y`, show that `x^"m" y^"n" + 1/(x^"m" y^"n")` = 2 cos(mα – nβ)
Solve the equation z3 + 27 = 0
If ω ≠ 1 is a cube root of unity, show that the roots of the equation (z – 1)3 + 8 = 0 are – 1, 1 – 2ω, 1 – 2ω2
Find the value of `sum_("k" = 1)^8 (cos (2"k"pi)/9 + "i" sin (2"kpi)/9)`
If ω ≠ 1 is a cube root of unity, show that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128
If ω ≠ 1 is a cube root of unity, show that (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)….. (1 + ω2n) = 1
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `pi/3`
If z = 2 – 2i, find the rotation of z by θ radians in the counterclockwise direction about the origin when θ = `(2pi)/3`
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and (1 + ω)7 = A + Bω, then (A, B) equals
Choose the correct alternative:
The product of all four values of `(cos pi/3 + "i" sin pi/3)^(3/4)` is
Choose the correct alternative:
If ω ≠ 1 is a cubic root of unity and `|(1, 1, 1),(1, - omega^2 - 1, omega^2),(1, omega^2, omega^7)|` = 3k, then k is equal to