English

Show that the Points 2 ^ I , − ^ I − 4 ^ J and − ^ I + 4 ^ J Form an Isosceles Triangle. - Mathematics

Advertisements
Advertisements

Question

Show that the points 2 \[\hat{i}, -    \hat{i}-4 \] \[\hat{j}\] and \[-\hat{i}+4\hat{j}\]  form an isosceles triangle.

Sum

Solution

Given:- The points A, B, C  with position vectors \[\vec{a} ,\vec{b} , \vec{c}\]  respectively.
Also,
\[\vec{a} = 2 \hat{i}\]
\[\vec{b} = - \hat{i} - 4 \hat{j}\]
\[\vec{c} = - \hat{i} + 4 \hat{j}\]
Then, 
\[\overrightarrow{AB} = \vec{b} - \vec{a} \]
\[ \Rightarrow \overrightarrow{AB} = \left( - \hat{i} - 4 \hat{j} \right) - 2 \hat{i} \]
\[ \Rightarrow \overrightarrow{AB} = - 3 \hat{i} - 4 \hat{j} \]
\[\text{ Now, }\left| \overrightarrow{AB} \right| = \sqrt{\left( - 3 \right)^2 + \left( - 4 \right)^2} = \sqrt{9 + 16} = \sqrt{25} = 5\]
\[ \overrightarrow {BC} = \vec{c} - \vec{b} \]
\[ \Rightarrow \overrightarrow {BC} = \left( - \hat{i} + 4 \hat{j} \right) - \left( - \hat{i} - 4 \hat{j} \right)\]
\[ \Rightarrow \overrightarrow {BC} = - \hat{i} + 4 \hat{j} + \hat{i} + 4 \hat{j} \]
\[ \Rightarrow \overrightarrow{BC} = 8 \hat{j}\]
and 
\[\overrightarrow{AC} = \vec{c} - \vec{a} \]
\[ \Rightarrow \overrightarrow{AC} = \left( - \hat{i} + 4 \hat{j} \right) - 2 \hat{i} \]
\[ \Rightarrow \overrightarrow{AC} = - 3 \hat{i} + 4 \hat{j} \]
\[\text{Now, }\left| \overrightarrow {AC} \right| = \sqrt{\left( - 3 \right)^2 + \left( 4 \right)^2} = \sqrt{9 + 16} = \sqrt{25} = 5\]
Since, the magnitude of AB and AC is equal.
Hence, the points 2 \[\hat{i}, -    \hat{i}-4 \] \[\hat{j}\] and \[\hat{i}+4\]  form an isosceles triangle.

shaalaa.com
Position Vector of a Point Dividing a Line Segment in a Given Ratio
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - Exercise 23.4 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
Exercise 23.4 | Q 9 | Page 43

RELATED QUESTIONS

The two vectors `hatj+hatk " and " 3hati-hatj+4hatk` represent the two sides AB and AC, respectively of a ∆ABC. Find the length of the median through A


If \[\vec{a,} \vec{b}\] are the position vectors of A, B respectively, find the position vector of a point C in AB produced such that AC = 3 AB and that a point D in BA produced such that BD = 2BA.


Show that the four points P, Q, R, S with position vectors \[\vec{p}\], \[\vec{q}\], \[\vec{r}\], \[\vec{s}\] respectively such that 5 \[\vec{p}\] − 2 \[\vec{q}\] + 6 \[\vec{r}\] − 9 \[\vec{s}\] \[\vec{0}\], are coplanar. Also, find the position vector of the point of intersection of the line segments PR and QS.


The vertices A, B, C of triangle ABC have respectively position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\]  with respect to a given origin O. Show that the point D where the bisector of ∠ A meets BC has position vector \[\vec{d} = \frac{\beta \vec{b} + \gamma \vec{c}}{\beta + \gamma},\text{ where }\beta = \left| \vec{c} - \vec{a} \right| \text{ and, }\gamma = \left| \vec{a} - \vec{b} \right|\]
Hence, deduce that the incentre I has position vector
\[\frac{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}}{\alpha + \beta + \gamma},\text{ where }\alpha = \left| \vec{b} - \vec{c} \right|\]


Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.


If the position vector of a point (−4, −3) be \[\vec{a,}\] find \[\left| \vec{a} \right|\]


Find the coordinates of the tip of the position vector which is equivalent to \[\vec{A} B\], where the coordinates of A and B are (−1, 3) and (−2, 1) respectively.


If the position vectors of the points A (3, 4), B (5, −6) and C (4, −1) are \[\vec{a,}\] \[\vec{b,}\] \[\vec{c}\] respectively, compute \[\vec{a} + 2 \vec{b} - 3 \vec{c}\].


If \[\vec{a}\] be the position vector whose tip is (5, −3), find the coordinates of a point B such that \[\overrightarrow{AB} =\] \[\vec{a}\], the coordinates of A being (4, −1).


If \[\overrightarrow{PQ} = 3 \hat{i} + 2 \hat{j} - \hat{k}\] and the coordinates of P are (1, −1, 2), find the coordinates of Q.


Find the position vector of a point R which divides the line segment joining points \[P \left( \hat{i} + 2 \hat{j} + \hat{k} \right) \text{ and Q }\left( - \hat{i} + \hat{j} + \hat{k} \right)\] internally 2:1.


Find the position vector of a point R which divides the line segment joining points:

\[P \left( \hat{i} + 2 \hat{j} + \hat{k}\right) \text { and } Q \left( - \hat{i} + \hat{j} + \hat{k} \right)\] externally


Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4, 1, −2).


If \[\vec{a,} \vec{b}\] are two non-collinear vectors prove that the points with position vectors \[\vec{a} + \vec{b,} \vec{a} - \vec{b}\text{ and }\vec{a} + \lambda \vec{b}\] are collinear for all real values of λ.


Show that the points whose position vectors are as given below are collinear:
\[2 \hat{i} + \hat{j} - \hat{k} , 3 \hat{i} - 2 \hat{j} + \hat{k} \text{ and }\hat{i} + 4 \hat{j} - 3 \hat{k}\]


Show that the points whose position vectors are as given below are collinear: \[3 \hat{i} - 2 \hat{j} + 4 \hat{k}, \hat{i} + \hat{j} + \hat{k}\text{ and }- \hat{i} + 4 \hat{j} - 2 \hat{k}\]


Show that the four points having position vectors
\[6 \hat{i} - 7 \hat{j} , 16 \hat{i} - 19 \hat{j} - 4 \hat{k} , 3 \hat{j} - 6 \hat{k} , 2 \hat{i} - 5 \hat{j} + 10 \hat{k}\] are coplanar.


If D is the mid-point of side BC of a triangle ABC such that \[\overrightarrow{AB} + \overrightarrow{AC} = \lambda \overrightarrow{AD} ,\] write the value of λ.


Find the position vector of the point which divides the join of points with position vectors `vec"a" + 3vec"b" and vec"a"- vec"b"` internally in the ratio 1 : 3. 


X and Y are two points with position vectors `3vec("a") + vec("b")` and `vec("a")-3vec("b")`respectively. Write the position vector of a point Z which divides the line segment XY in the ratio 2 : 1 externally.


Find the value of x such that the four-point with position vectors,
`"A"(3hat"i"+2hat"j"+hat"k"),"B" (4hat"i"+"x"hat"j"+5hat"k"),"c" (4hat"i"+2hat"j"-2hat"k")`and`"D"(6hat"i"+5hat"j"-hat"k")`are coplaner.


The position vector of the point which divides the join of points with position vectors `vec"a" + vec"b"` and 2`vec"a" - vec"b"` in the ratio 1:2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×