Advertisements
Advertisements
Question
Show that points A(–4, –7), B(–1, 2), C(8, 5) and D(5, –4) are vertices of a rhombus ABCD.
Solution
The given points are A(–4, –7), B(–1, 2), C(8, 5) and D(5, –4).
Distance between two points = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
According to the distance formula,
`"AB" =sqrt([-1-(-4)]^2 +[2-(-7)]^2`
`∴ "AB" = sqrt(3^2+9^2)`
`∴ "AB" =sqrt(9+81) `
`∴ "AB" = sqrt90` ...(1)
`"BC" =sqrt([8-(-1)]^2+(5-2)^2)`
`∴ "BC" =sqrt(9^2+3^2)`
`∴ "BC" = sqrt(81+9)`
`∴ "BC" = sqrt90` ...(2)
`"CD" = sqrt((5-8)^2 +(-4-5)^2)`
`∴ "CD" =sqrt((-3)^2 +(-9)^2)`
`∴ "CD" =sqrt(9+81)`
`∴ "CD" = sqrt90 ` ....... (3)
`"AD" = sqrt([5-(-4)]^2+ [-4-(-7)]^2)`
`∴ "AD" =sqrt(9^2+3^2)`
`∴ "AD" =sqrt(81+9)`
`∴ "AD" = sqrt90` ....... (4)
From (1), (2), (3), and (4)
AB = BC = CD = AD
Thus, all sides are equal.
Now,
AC = `sqrt([8 - (-4)]^2 + [5 - (-7)]^2)`
= `sqrt((12)^2 + (12)^2)`
= `sqrt(144 + 144)`
= `sqrt288`
= `sqrt(144 xx 2)`
= `12sqrt2`
BD = `sqrt([5 - (-1)]^2 + [(-4) - 2]^2)`
=`sqrt((6)^2 + (6)^2)`
= `sqrt(36 + 36)`
= `sqrt72`
= `sqrt(36 xx 2)`
= `6sqrt2`
∴ diagonals are not equal.
In a quadrilateral, if all the sides are equal, then it is a rhombus.
∴ `square` ABCD is a rhombus.
∴ Points A, B, C and D are the vertices of rhombus ABCD.