Advertisements
Advertisements
Question
Simplify and express the Solution in the positive exponent form:
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
Solution
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
`= (6 xx 6 xx (-6)^2 xx 3^6)/(3^3 xx 4^3 xx 3^5)`
`= ((6)^2 (-6)^2 xx 3^(6-3-5))/4^3`
`= ((6)^2 (-6)^2 3^-2)/4^3`
`= (6^2 (-6)^2)/(3^2 xx 4^3)`
`= (6 xx 6 xx -6 xx -6)/(3 xx 3 xx 4 xx 4 xx 4)`
`= 9/4 = (3/2)^2`
APPEARS IN
RELATED QUESTIONS
Evaluate: 23 ÷ 28
Simplify, giving Solution with positive index
(- a5) (a2)
Simplify, giving Solution with positive index
(-3)2 (3)3
Simplify, giving Solution with positive index
(- 4x) (-5x2)
Simplify, giving Solution with positive index
x2a +7. x2a-8
Simplify, giving Solution with positive index
4x2y2 ÷ 9x3y3
Simplify, giving Solution with positive index
(2a3)4 (4a2)2
Simplify, giving Solution with positive index
(4x2y3)3 ÷ (3x2y3)3
Simplify, giving Solution with positive index
`((5"x"^7)^3 . (10"x"^2)^2)/(2"x"^6)^7 = (5^3 "x"^(7xx3) . 10^2 . "x"^(2xx2))/(2^7. "x"^(6xx7))`
Evaluate: `(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`