Advertisements
Advertisements
Question
Simplify and express the Solution in the positive exponent form:
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
Solution
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
We will use the following rules of exponents:
1. `a^m/a^n = a^(m-n)`
2. am × an = am+n
3. For any negative exponent `a^-n = 1/a^n`
For a: `a^-7/a^3 = a^(-7-3) =a^-10`
For b: `b^-7/b^-5 = b^(-7+5) = b^-2`
For c: `c^5/c^-3 = c^(5+3) = c^8`
For d: `d^4/d^8 = d^(4-8) = b^-4`
Now, combine all the simplified terms: a−10 × b−2 × c8 × d−4
We can rewrite terms with negative exponents as fractions:
`1/a^10 xx 1/b^2 xx c^8 xx 1/d^4`
This gives
`c^8/(a^10 xx b^2 xx d^4)`
APPEARS IN
RELATED QUESTIONS
Evaluate: 83 x 8-5 x 84
Evaluate: 54 × 53 ÷ 55
Simplify, giving Solution with positive index
2b6. b3. 5b4
Simplify, giving Solution with positive index
x2y3. 6x5y. 9x3y4
Simplify, giving Solution with positive index
(a10)10 (16)10
Simplify, giving Solution with positive index
(-2)2 × (0)3 × (3)3
Simplify, giving Solution with positive index
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
Simplify and express the Solution in the positive exponent form:
`((2^3)^5 xx 5^4)/(4^3 xx 5^2)`
If m2 = -2 and n = 2; find the values of: 6m-3 + 4n2
If m2 = -2 and n = 2; find the values of: 2n3 – 3m