Advertisements
Advertisements
प्रश्न
Simplify and express the Solution in the positive exponent form:
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
उत्तर
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
We will use the following rules of exponents:
1. `a^m/a^n = a^(m-n)`
2. am × an = am+n
3. For any negative exponent `a^-n = 1/a^n`
For a: `a^-7/a^3 = a^(-7-3) =a^-10`
For b: `b^-7/b^-5 = b^(-7+5) = b^-2`
For c: `c^5/c^-3 = c^(5+3) = c^8`
For d: `d^4/d^8 = d^(4-8) = b^-4`
Now, combine all the simplified terms: a−10 × b−2 × c8 × d−4
We can rewrite terms with negative exponents as fractions:
`1/a^10 xx 1/b^2 xx c^8 xx 1/d^4`
This gives
`c^8/(a^10 xx b^2 xx d^4)`
APPEARS IN
संबंधित प्रश्न
Evaluate: 83 x 8-5 x 84
Evaluate: 44 ÷ 43 x 40
Simplify, giving Solution with positive index
x2a +7. x2a-8
Simplify, giving Solution with positive index
`2^"4a". 2^("3a") .2^(-"a")`
Simplify, giving Solution with positive index
(-2)2 × (0)3 × (3)3
Simplify, giving Solution with positive index
(4x2y3)3 ÷ (3x2y3)3
Simplify, giving Solution with positive index
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
Simplify and express the Solution in the positive exponent form:
`((2^3)^5 xx 5^4)/(4^3 xx 5^2)`
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
If m2 = -2 and n = 2; find the values of: mn + nm