Advertisements
Advertisements
प्रश्न
Simplify, giving Solution with positive index
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
उत्तर
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
`= (7^2 "p"^(2xx2) "q"^(9xx2) "r"^(5xx2) (4^3 "p"^3 "q"^3 "r"^3))/(14^2 "p"^(6xx2) "q"^(10xx2) "r"^(4xx2))`
`= (7 xx 7 "p"^4 "q"^18 "r"^10 . 4 xx 4 xx 4 "p"^3 "q"^3 "r"^3)/(2 xx 7 xx 2 xx 7 xx "p"^12 "q"^20 "r"^8)`
`= "p"^(4 - 12 + 3) "q"^(18-20+3) "r"^(10 - 8 + 3) 4 xx 4`
`= 16"p"^(-5) "qr"^5`
`= (16"qr"^5)/"p"^5`
APPEARS IN
संबंधित प्रश्न
Evaluate: (26)0
Evaluate: 54 × 53 ÷ 55
Simplify, giving Solution with positive index
(- 4x) (-5x2)
Simplify, giving Solution with positive index
x2a +7. x2a-8
Simplify, giving Solution with positive index
`2^"4a". 2^("3a") .2^(-"a")`
Simplify and express the Solution in the positive exponent form:
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
Simplify and express the Solution in the positive exponent form:
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
Evaluate: `(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
If m2 = -2 and n = 2; find the values of: mn + nm