Advertisements
Advertisements
प्रश्न
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
उत्तर
`5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 25^("n" - 1) xx 1/((5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 1/(5^("n" - 1)) = 5^("n" - "n" + 1) = 5^1`
APPEARS IN
संबंधित प्रश्न
Evaluate: 23 ÷ 28
Evaluate: (26)0
Evaluate: 54 ÷ 53 x 55
Simplify, giving Solution with positive index
2b6. b3. 5b4
Simplify, giving Solution with positive index
x2y3. 6x5y. 9x3y4
Simplify, giving Solution with positive index
(5a2b) (2ab2) (a3b)
Simplify, giving Solution with positive index
- (3ab)2 (-5a2bc4)2
Simplify, giving Solution with positive index
(2a3)4 (4a2)2
Simplify, giving Solution with positive index
`((5"x"^7)^3 . (10"x"^2)^2)/(2"x"^6)^7 = (5^3 "x"^(7xx3) . 10^2 . "x"^(2xx2))/(2^7. "x"^(6xx7))`
Evaluate: `(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`