Advertisements
Advertisements
प्रश्न
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
उत्तर
`5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 25^("n" - 1) xx 1/((5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 1/(5^("n" - 1)) = 5^("n" - "n" + 1) = 5^1`
APPEARS IN
संबंधित प्रश्न
Evaluate: (35 x 47 x 58)0
Simplify, giving Solution with positive index
x2y3. 6x5y. 9x3y4
Simplify, giving Solution with positive index
(- y2) (- y3)
Simplify, giving Solution with positive index
(5a2b) (2ab2) (a3b)
Simplify, giving Solution with positive index
(a10)10 (16)10
Simplify, giving Solution with positive index:
(n2)2 (- n2)3
Simplify, giving Solution with positive index
(4x2y3)3 ÷ (3x2y3)3
Simplify, giving Solution with positive index
`((5"x"^7)^3 . (10"x"^2)^2)/(2"x"^6)^7 = (5^3 "x"^(7xx3) . 10^2 . "x"^(2xx2))/(2^7. "x"^(6xx7))`
Simplify and express the Solution in the positive exponent form:
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
If m2 = -2 and n = 2; find the values of: 2n3 – 3m