Advertisements
Advertisements
प्रश्न
Simplify, giving Solution with positive index
(4x2y3)3 ÷ (3x2y3)3
उत्तर
(4x2y3)3 ÷ (3x2y3)3
`= (4^3 "x"^(2xx3) "y"^(3xx3))/(3^3 "x"^(2xx3) "y"^(3xx3))`
`= (4^3"x"^6"y"^9)/(3^3 "x"^6 "y"^9)`
`= 4^3/3^3 = 64/27`
APPEARS IN
संबंधित प्रश्न
Evaluate: (35 x 47 x 58)0
Simplify, giving Solution with positive index
x2y3. 6x5y. 9x3y4
Simplify, giving Solution with positive index
(5a2b) (2ab2) (a3b)
Simplify, giving Solution with positive index
x2a +7. x2a-8
Simplify, giving Solution with positive index
(-2)2 × (0)3 × (3)3
Simplify, giving Solution with positive index
`((7 "p"^2 "q"^9 "r"^5)^2 (4 "pqr")^3)/(14 "p"^6 "q"^10 "r"^4)^2`
Simplify and express the Solution in the positive exponent form:
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
Simplify and express the Solution in the positive exponent form:
`("a"^3 "b"^(-5))^-2 = "a"^(3 xx -2) "b"^(-5 xx -2)`
Evaluate: `(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`
If m = -2 and n = 2; find the values of m2 + n2 - 2mn.