Advertisements
Advertisements
प्रश्न
Evaluate: `(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`
उत्तर
`(2^2)^0 + 2^-4 div 2^-6 + (1/2)^-3`
`= (4)^0 + (1/2)^4 div (1/2)^6 + (2/1)^3` (∵ a0 = 1)
`= 1 + (1/2 xx 1/2 xx 1/2 xx 1/2) div (1/2 xx 1/2 xx 1/2 xx 1/2 xx 1/2 xx 1/2) + (2/1 xx 2/1 xx 2/1)`
`= 1+ (1/2 xx 1/2 xx 1/2 xx 1/2 xx 2 xx 2 xx 2 xx 2 xx 2 xx 2) + 8`
= 1 + 4 + 8 = 13
APPEARS IN
संबंधित प्रश्न
Evaluate: 83 x 8-5 x 84
Simplify, giving Solution with positive index
(- a5) (a2)
Simplify, giving Solution with positive index
(- y2) (- y3)
Simplify, giving Solution with positive index
4x2y2 ÷ 9x3y3
Simplify, giving Solution with positive index
(a10)10 (16)10
Simplify, giving Solution with positive index
(4x2y3)3 ÷ (3x2y3)3
Simplify, giving Solution with positive index
`(1/("4ab"^2"c"))^2 div (3/(2"a"^2"bc"^2))^4`
Simplify, giving Solution with positive index
`((5"x"^7)^3 . (10"x"^2)^2)/(2"x"^6)^7 = (5^3 "x"^(7xx3) . 10^2 . "x"^(2xx2))/(2^7. "x"^(6xx7))`
Simplify and express the Solution in the positive exponent form:
`((-3)^3 xx 2^6)/(6 xx 2^3)`
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`