Advertisements
Advertisements
Question
Evaluate: `5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
Solution
`5^"n" xx 25^("n" - 1) div (5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 25^("n" - 1) xx 1/((5^("n" -1) xx 25^("n" - 1))`
`= 5^"n" xx 1/(5^("n" - 1)) = 5^("n" - "n" + 1) = 5^1`
APPEARS IN
RELATED QUESTIONS
Evaluate: 23 ÷ 28
Evaluate: (30)6
Evaluate: (35 x 47 x 58)0
Simplify, giving Solution with positive index
(- 4x) (-5x2)
Simplify, giving Solution with positive index
- (3ab)2 (-5a2bc4)2
Simplify and express the Solution in the positive exponent form:
`((-3)^3 xx 2^6)/(6 xx 2^3)`
Simplify and express the Solution in the positive exponent form:
`(36 xx (-6)^2 xx 3^6)/(12^3 xx 3^5)`
Simplify and express the Solution in the positive exponent form:
`- 128/2187`
Simplify and express the Solution in the positive exponent form:
`("a"^-7 xx "b"^-7 xx "c"^5 xx "d"^4)/("a"^3 xx "b"^-5 xx "c"^-3 xx "d"^8)`
If m = -2 and n = 2; find the values of m2 + n2 - 2mn.