Advertisements
Advertisements
Question
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Solution
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
= `(3^3/7^3)^(2/3) ÷ (1)/(((5^4)/(2^4 xx 3^4))^(1/4)) xx (2^3 xx 67)/root(3)(3^3)`
= `(3^3/7^3)^(2/3) ÷ (1)/(((5^4)/(2^4 xx 3^4))^(1/4)) xx (2^3 xx 67)/(3^3)^(1/3)`
= `(3^(3xx2/3)/(7^(3xx2/3))) ÷ (1)/((5^(4xx1/4)/(2^(4xx1/4) xx 3^4xx1/4))) xx (2^3 xx 67)/(3^(3xx1/3)` .....(Using (am)n = amn)
= `(3^2/7^2) ÷ (1)/((5^1/(2^1 xx 3^1))) xx (2^3 xx 67)/(3^1)`
= `(3^2/7^2) ÷ ((2^1 xx 3^1)/5^1) xx ((2^3 xx 67)/(3^1))` ......(Using am x an = am+n and am ÷ an = am-n)
= `(3^2/7^2) ÷ (5^1/(2^1 xx 3^1)) xx ((2^3 xx 67)/(3^1))`
= `3^(2-1-1) xx 2^(3-1) xx 5^1 xx 7^2 xx 67`
= 30 x 22 x 51 x 72 x 67
= 1 x 4 x 5 x 49 x 67 ......(Using a0 = 1)
= 65660.
APPEARS IN
RELATED QUESTIONS
Solve for x : (13)√x = 44 - 34 - 6
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify : `3"x"-[4"x"-overline(3"x"-5"y")-3 {2"x"-(3"x"-overline(2"x"-3"y"))}]`
Simplify: (x5 ÷ x2) × y2 × y3
Simplify: `3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`