English

Simplify the Following: ( 27 343 ) 2 3 ÷ 1 ( 625 1296 ) 1 4 × 536 3 √ 27 - Mathematics

Advertisements
Advertisements

Question

Simplify the following:

`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`

Sum

Solution

`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`

= `(3^3/7^3)^(2/3) ÷ (1)/(((5^4)/(2^4 xx 3^4))^(1/4)) xx (2^3 xx 67)/root(3)(3^3)`

= `(3^3/7^3)^(2/3) ÷ (1)/(((5^4)/(2^4 xx 3^4))^(1/4)) xx (2^3 xx 67)/(3^3)^(1/3)`

= `(3^(3xx2/3)/(7^(3xx2/3))) ÷ (1)/((5^(4xx1/4)/(2^(4xx1/4) xx 3^4xx1/4))) xx (2^3 xx 67)/(3^(3xx1/3)`  .....(Using (am)n = amn)

= `(3^2/7^2) ÷ (1)/((5^1/(2^1 xx 3^1))) xx (2^3 xx 67)/(3^1)`

= `(3^2/7^2) ÷ ((2^1 xx 3^1)/5^1) xx ((2^3 xx 67)/(3^1))`   ......(Using am x an = am+n and am ÷ an = am-n)

= `(3^2/7^2) ÷ (5^1/(2^1 xx 3^1)) xx ((2^3 xx 67)/(3^1))`

= `3^(2-1-1) xx 2^(3-1) xx 5^1 xx 7^2 xx 67`
= 30 x 22 x 51 x 72 x 67
= 1 x 4 x 5 x 49 x 67  ......(Using a0 = 1)
= 65660.

shaalaa.com
Simplification of Expressions
  Is there an error in this question or solution?
Chapter 9: Indices - Exercise 9.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 9 Indices
Exercise 9.1 | Q 7.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×