Advertisements
Advertisements
Question
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Solution
`a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
L.H.S. = `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1)`
= `(1/a)/(1/a + 1/b) + (1/a)/(1/a - 1/b)`
= `(1/a)/((b + a)/(ab)) + (1/a)/((b - a)/(ab))`
= `1/a xx (ab)/(b+ a) + 1/a xx (ab)/(b - a)`
= `b/( b + a ) + b/(b - a)`
= `( b^2 - ab + b^2 + ab )/( b^2 - a^2 )`
= `( 2b^2 )/( b^2 - a^2 )`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Write each of the following in the simplest form:
`"a"^(1/3) ÷ "a"^(-2/3)`
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Simplify the following:
`(27 xx^9)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`