Advertisements
Advertisements
प्रश्न
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
उत्तर
`a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
L.H.S. = `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1)`
= `(1/a)/(1/a + 1/b) + (1/a)/(1/a - 1/b)`
= `(1/a)/((b + a)/(ab)) + (1/a)/((b - a)/(ab))`
= `1/a xx (ab)/(b+ a) + 1/a xx (ab)/(b - a)`
= `b/( b + a ) + b/(b - a)`
= `( b^2 - ab + b^2 + ab )/( b^2 - a^2 )`
= `( 2b^2 )/( b^2 - a^2 )`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Write each of the following in the simplest form:
(a3)5 x a4
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`