Advertisements
Advertisements
प्रश्न
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
उत्तर
L.H.S. = `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 )`
= `( a + b + c )/(1/(ab) + 1/(bc) + 1/(ca) )`
= `( a + b + c )/(( c + a + b )/(abc))`
= `(( a + b + c )( abc ))/( a + b + c )`
= abc
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `2{m-3(n+overline(m-2n))}`
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`