Advertisements
Advertisements
प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
उत्तर
34x = ( 81 )-1 and `10^(1/y)` = 0.0001
⇒ 34x = `( 3^4 )^-1 and 10^(1/y) = 1/10000`
⇒ 34x = `3^-4 and 10^(1/y) = 1/10^4`
⇒ 4x = - 4 and `10^(1/y) = 10^-4`
⇒ x = - 1 and `1/y` = - 4
⇒ x = - 1 and y = `-1/4`
∴ `2^-x xx 16^y = 2^(-(-1)) x 16^(-1/4)`
= ` 2 xx 2^( 4 xx - 1/4 )`
= ` 2 xx 2^-1`
= `2^(1 - 1)`
= `2^0`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify: x5 ÷ (x2 × y2) × y3
Simplify: (x5 ÷ x2) × y2 × y3
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`