Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
उत्तर
3p-2q3 ÷ 2p3q-2
= `(3"p"^-2"q"^3)/(2"p"^3"q"^-2)`
= `(3)/(2)["p"^-2/"p"^3 xx "q"^3/"q"^-2]`
= `(3)/(2)[("p"^-2 ÷ "p"^3) xx ("q"^3 ÷ "q"^-2)]`
= `(3)/(2)[("p"^(-2-3)) xx ("q"^(3 - (-2)))]` .....(Using am ÷ an = am-n)
= `(3)/(2)[("p"^-5) xx ("q"^5)]`
= `(3)/(2)[(1/"p"^5) xx ("q"^5)]`
= `(3"q"^5)/(2"p"^5)`.
APPEARS IN
संबंधित प्रश्न
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify: (x5 ÷ x2) × y2 × y3
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`(27 xx^9)^(2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`