Advertisements
Advertisements
प्रश्न
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
उत्तर
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
= `"a"^(1/3)("a"^(2/3) -1 + "a"^(-2/3)) + "a"^(-1/3)("a"^(2/3) - 1 + "a"^(-2/3))`
= `("a"^(1/3) xx "a"^(2/3) - "a"^(1/3) xx 1 + "a"^(1/3) xx "a"^(-2/3)) + ("a"^(-1/3) xx "a"^(2/3) - "a"^(-1/3) xx 1 + "a"^(-1/3) xx "a"^(-2/3))`
= `("a"^(1/3 + 2/3) - "a"^(1/3) xx 1 + "a"^(1/3 + 2/3)) + ("a"^(-1/3 + 2/3) - "a"^(-1/3) + "a"^(-1/3 - 2/3))` .....(Using am x an = am+n)
= `("a"^1 - "a"^(1/3) + "a"^(-1/3)) + ("a"^(1/3) - "a"^(-1/3) + "a"^-1)`
= `"a" - "a"^(1/3) + "a"^(-1/3) + "a"^(1/3) - "a"^(-1/3) + (1)/"a"`
= `"a" + (1)/"a"`.
APPEARS IN
संबंधित प्रश्न
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify: (x5 ÷ x2) × y2 × y3
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`