Advertisements
Advertisements
प्रश्न
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
उत्तर
(am)n = am .an
⇒ amn = am + n
⇒ mn = m + n ....(1)
Now,
m( n - 1 ) - ( n - 1 )
= mn - m - n + 1
= m + n - m - n + 1 ....[ From (1) ]
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify: (x5 ÷ x2) × y2 × y3
Write each of the following in the simplest form:
a2 x a3 ÷ a4
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`