Advertisements
Advertisements
प्रश्न
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
उत्तर
`root(3)(15) and n = root(3)(14)`
⇒ m3 = 15 and n3 = 14
∴ m - n - `1/(m^2 + mn + n^2)`
= `[(m^3 + m^2n + mn^2 ) - (m^2n + mn^2 + n^3 ) - 1]/[m^2 + mn + n^2 ]`
= `[ m^3 + m^2n + mn^2 - m^2n - mn^2 - n^3 - 1 ]/[m^2 + mn + n^2 ]`
= `[m^3 - n^3 - 1]/[ m^2 + mn + n^2 ]`
= `[ 15 - 14 - 1 ]/[ m^2 + mn + n^2 ]`
= `[ 1 - 1 ]/[ m^2 + mn + n^2 ]`
= 0
APPEARS IN
संबंधित प्रश्न
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1