Advertisements
Advertisements
प्रश्न
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
उत्तर
a = `2^(1/3) - 2^((-1)/3)`
⇒ a = `2^(1/3) - (1)/(2^(1/3)`
⇒ a3 = `(2^(1/3) - 1/(2^(1/3)))^3`
= `2 - 1/2 - 3(2^(1/3) - 1/(2^(1/3)))`
⇒ a3 = `(4 - 1)/(2) - 3"a"`
⇒ a3 = `(3)/(2) - 3"a"`
⇒ 2a3 + 6a = 3.
APPEARS IN
संबंधित प्रश्न
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Solve : 3x-1× 52y-3 = 225.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Solve for x:
1 = px
Solve for x:
5x2 : 5x = 25 : 1
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1