Advertisements
Advertisements
प्रश्न
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
उत्तर
a = `2^(1/3) - 2^((-1)/3)`
⇒ a = `2^(1/3) - (1)/(2^(1/3)`
⇒ a3 = `(2^(1/3) - 1/(2^(1/3)))^3`
= `2 - 1/2 - 3(2^(1/3) - 1/(2^(1/3)))`
⇒ a3 = `(4 - 1)/(2) - 3"a"`
⇒ a3 = `(3)/(2) - 3"a"`
⇒ 2a3 + 6a = 3.
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve : 4x - 2 - 2x + 1 = 0
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1