Advertisements
Advertisements
प्रश्न
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
उत्तर
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
⇒ `(3^-1)^-4 ÷ (3^2)^((-1)/(2)` = 3k
⇒ `3^4 ÷ 3^((-2)/(3)` = 3k
⇒ `3^(4 + 2/3)` = 3k
⇒ `3^(14/3)` = 3k
⇒ k = `(14)/(3)`.
APPEARS IN
संबंधित प्रश्न
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If ax = b, by = c and cz = a, prove that : xyz = 1.
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1