Advertisements
Advertisements
प्रश्न
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
उत्तर
L.H.S.
= `sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)`
= `sqrt(y/x) · sqrt(z/y) · sqrt(x/z)` .....(Using (am)n = amn)
= `sqrt((y/x)(z/y)(x/z))`
= `sqrt(x^(1-1) · y^(1-1) · z^(1-1))`
= `sqrt(x^° · y^° · z^°)`
= `sqrt(1·1·1)`
= 1 ......(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find x, if : 42x = `1/32`
Solve : `[3^x]^2` : 3x = 9 : 1
If ax = b, by = c and cz = a, prove that : xyz = 1.
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
2x + 3 + 2x + 1 = 320
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Find the value of (8p)p if 9p + 2 - 9p = 240.
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1