हिंदी

Find the Value of 'A' and 'B' If: ( √ 243 ) a ÷ 3 B + 1 = 1 and 27 B − 81 4 − a 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of 'a' and 'b' if:

`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0

योग

उत्तर

`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0

⇒ `(sqrt(3^5))^"a" ÷  3^("b" + 1) and (3^3)^"b" - (3^4)^(4 - "a"/2)` = 0

⇒ `(3^5)^("a"/2) ÷ 3^("b" + 1) = 1 and 3^(3"b") - (3^4)^(4 - "a"/2)` = 0

⇒ `3^(((5"a")/2)) ÷  3^("b" + 1) = 1 and 3^((3"b")) - 3^(4(4 - "a"/2)` = 0

⇒ `3^(((5"a")/2 - "b" - 1)) = 1 and 3^((3"b")) - 3^(16 - 2"a")` = 0

⇒ `3^(((5"a")/2 - "b" - 1)) = 3^° and 3^(3"b") = 3^(16 - 2"a")`

⇒ `(5"a")/(2) - "b" - 1 = 0 and 3"b"` = 16 - 2a

⇒ `(5"a")/(2) - "b" = 1 and 2"a" + 3"b"` = 16

⇒ 5a - 2b = 2 and 2a + 3b = 16
Multiply the equations by 3 and 2 respectively.
⇒ 15a - 6b = 6 and 4a + 6b = 32
Adding the equations,
19a = 38
⇒ a = 2
Substitute the value of ain 5a - 2b = 2 to find b.
5a - 2b = 2
⇒ 5(2) - 2b = 2
⇒ 10 - 2b = 2
⇒ b = 4
Hence, a = 2 and b = 4.

shaalaa.com
Solving Exponential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Indices - Exercise 9.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 9 Indices
Exercise 9.1 | Q 22.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×