Advertisements
Advertisements
प्रश्न
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
उत्तर
L.H.S.
= `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
= `(1 + "a"^("q"- "p") + 1 + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^("q"-"p"))`
= `(2 + "a"^-("p" -"q") + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^-("q"-"p"))`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q") . "a"^-("p"-"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q"-"p"+"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^0`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + 1`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(2 + "a"^-("p"-"q") + "a"^("p"-"q"))`
= 1
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1