Advertisements
Advertisements
प्रश्न
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
उत्तर
Let ax = by = cz = k
⇒ `"a" = "k"^(1/x), "b" = "k"^(1/y), "c" = "k"^(1/2)`
It is also given that b2 = ac
⇒ `"k"^(2/y) = "k"^(1/x) xx "k"^(1/2)`
⇒ `"k"^(2/y) = "k"^(1/x + 1/z)`
⇒ `(2)/y = (1)/x + (1)/z`
⇒ y = `(2zx)/(z + x)`.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
p3 x p-2 = px
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`