Advertisements
Advertisements
प्रश्न
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
उत्तर
`(root(3)(8))^((-1)/(2)` = 2k
⇒ `8^(1/3 xx (-1)/(2))` = 2k
⇒ `(2^3)^(1/3 xx (-1)/2)` = 2k
⇒ `(2^3)^(1/3 xx (-1)/2)` = 2k
⇒ `2^((-1)/(2)` = 2k
⇒ k = `-(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
Find the value of (8p)p if 9p + 2 - 9p = 240.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.