Advertisements
Advertisements
Question
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k
Solution
`(root(3)(8))^((-1)/(2)` = 2k
⇒ `8^(1/3 xx (-1)/(2))` = 2k
⇒ `(2^3)^(1/3 xx (-1)/2)` = 2k
⇒ `(2^3)^(1/3 xx (-1)/2)` = 2k
⇒ `2^((-1)/(2)` = 2k
⇒ k = `-(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1