Advertisements
Advertisements
Question
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Solution
`((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((a^5)/(b^8))^-5 = a^x . b^y`
⇒ `((b^6)/( a^3))^7 ÷ ((b^8)/(a^5))^5 = a^x . b^y`
⇒ `((b^42)/(a^21)) ÷ ((b^40)/(a^25)) = a^x . b^y`
⇒ `((b^42)/(a^21)) xx ((a^25)/(b^40)) = a^x . b^y`
⇒ b2 x a4 = ax x by
⇒ x = 4 and y = 2
⇒ x + y = 4 + 2 = 6
APPEARS IN
RELATED QUESTIONS
Solve for x : 9x+2 = 720 + 9x
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
If ax = b, by = c and cz = a, prove that : xyz = 1.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
1 = px
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.