Advertisements
Advertisements
Question
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Solution
Given 2250 = 2a · 3b · 5c
⇒ 32 x 53 x 2 = 2a · 3b · 5
⇒ a = 1, b = 2, c = 3
3a x 2-b x 5-x
= 31 x 2-2 x 5-3
= `(3)/(2^2 xx 5^3)`
= `(3)/(500)`.
APPEARS IN
RELATED QUESTIONS
Find x, if : 42x = `1/32`
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
If ax = b, by = c and cz = a, prove that : xyz = 1.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
22x+1= 8
Solve for x:
5x2 : 5x = 25 : 1
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`