Advertisements
Advertisements
Question
Find x, if : 42x = `1/32`
Solution
42x = `1/32`
⇒ ( 2 x 2 )2x = `1/[ 2 xx 2 xx 2 xx 2 xx 2]`
⇒ ( 22 )2x = `1/[ 2^5]`
⇒ 22 x 2x = 2- 5
⇒ 24x = 2- 5
We know that if bases are equal, the powers are equal
⇒ 4x = - 5
⇒ x = `(-5)/4`
APPEARS IN
RELATED QUESTIONS
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x : 9x+2 = 720 + 9x
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
2x + 3 + 2x + 1 = 320
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0