English

If M ≠ N and (M + N)-1 (M-1 + N-1) = Mxny, Show that : X + Y + 2 = 0 - Mathematics

Advertisements
Advertisements

Question

If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0

Sum

Solution

(m + n)-1 (m-1 + n-1) = mxny

⇒ `1/( m + n ) xx ( 1/m + 1/n ) = m^x.n^y `

⇒ `1/( cancel(m + n) ) xx ((cancel(m + n))/(mn)) = m^x.n^y `

⇒ `1/(mn) = m^x.n^y`

⇒ `1/m xx 1/n = m^x.n^y`

⇒ `m^-1.n^-1 = m^x.n^y`

Comparing the coefficient of x and y, we get

x = - 1 and y = -1

Putting x = -1 and y = -1

x + y + 2

-1 + (- 1) + 2

- 1 - 1 + 2 = 0 L.H.S

shaalaa.com
Solving Exponential Equations
  Is there an error in this question or solution?
Chapter 7: Indices (Exponents) - Exercise 7 (B) [Page 101]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 7 Indices (Exponents)
Exercise 7 (B) | Q 11 | Page 101
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×