Advertisements
Advertisements
Question
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
Solution
(m + n)-1 (m-1 + n-1) = mxny
⇒ `1/( m + n ) xx ( 1/m + 1/n ) = m^x.n^y `
⇒ `1/( cancel(m + n) ) xx ((cancel(m + n))/(mn)) = m^x.n^y `
⇒ `1/(mn) = m^x.n^y`
⇒ `1/m xx 1/n = m^x.n^y`
⇒ `m^-1.n^-1 = m^x.n^y`
Comparing the coefficient of x and y, we get
x = - 1 and y = -1
Putting x = -1 and y = -1
x + y + 2
-1 + (- 1) + 2
- 1 - 1 + 2 = 0 L.H.S
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Solve for x : 9x+2 = 720 + 9x
If ax = b, by = c and cz = a, prove that : xyz = 1.
Solve for x:
22x+1= 8
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1