Advertisements
Advertisements
Question
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1
Solution
L.H.S
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"`
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ x^"qr"/x^"pr"` .....(Using (am)n = amn)
= `(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) xx x^"pr"/x^"qr"`
= `(x^("pq"-"pr"))/x^("pq"- "qr") xx x^"pr"/x^"qr"`
= `(x^("pq"-"pr"+"pr"))/(x^("pq"-"qr"+"qr"` .....(Using am x an = am+n)
= `(x^("pq"))/(x^("pq")`
= 1
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve for x : 22x+1 = 8
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve for x : (49)x + 4 = 72 x (343)x + 1
Solve : `[3^x]^2` : 3x = 9 : 1
Solve : 3x-1× 52y-3 = 225.
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1