Advertisements
Advertisements
Question
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1
Solution
L.H.S.
= (xa)b-c x (xb)c-a x (xc)a-b
= `x^("a"("b"-"c")) xx x^("b"("c"-"a")) xx x^("c"("a"-"b"))` .....(Using (am)n = amn)
= `x^("ab"-"ac") xx x^("bc"-"ab") xx x^("ac"-"bc")`
= `x^("ab"-"ac"+"bc"-"ab"+"ac"-"bc")` .....(Using am x an = am+n)
= x°
=1
= R.H.S
= Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
`9 xx 3^x = (27)^(2x - 5)`
Solve for x:
1 = px
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0