Advertisements
Advertisements
Question
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Solution
`root(3)(15) and n = root(3)(14)`
⇒ m3 = 15 and n3 = 14
∴ m - n - `1/(m^2 + mn + n^2)`
= `[(m^3 + m^2n + mn^2 ) - (m^2n + mn^2 + n^3 ) - 1]/[m^2 + mn + n^2 ]`
= `[ m^3 + m^2n + mn^2 - m^2n - mn^2 - n^3 - 1 ]/[m^2 + mn + n^2 ]`
= `[m^3 - n^3 - 1]/[ m^2 + mn + n^2 ]`
= `[ 15 - 14 - 1 ]/[ m^2 + mn + n^2 ]`
= `[ 1 - 1 ]/[ m^2 + mn + n^2 ]`
= 0
APPEARS IN
RELATED QUESTIONS
Solve for x : 25x-1 = 4 23x + 1
Solve : 4x - 2 - 2x + 1 = 0
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve for x : 9x+2 = 720 + 9x
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
p3 x p-2 = px
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`