Advertisements
Advertisements
Question
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Solution
2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4`
2x = 4y = 8z
⇒ 2x = 22y = 23z
⇒ x = 2y = 3z
⇒ y = `x/2 and z = x/3`
Now, `1/(2x) + 1/(4y) + 1/(8z) = 4`
⇒ `1/(2x) + 1/[(4x)/2] + 1/[(8x)/3] = 4`
⇒ `1/(2x) + 2/(4x) + 3/(8x) = 4`
⇒ `1/(2x) + 1/(2x) + 3/(8x) = 4`
⇒ `[ 4 + 4 + 3 ]/(8x) = 4`
⇒ `11/(8x) = 4`
⇒ x = `11/32`.
APPEARS IN
RELATED QUESTIONS
Solve for x : 25x-1 = 4 23x + 1
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Solve : 3x-1× 52y-3 = 225.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Solve for x:
5x2 : 5x = 25 : 1
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
Find the value of (8p)p if 9p + 2 - 9p = 240.
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1