Advertisements
Advertisements
प्रश्न
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
उत्तर
2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4`
2x = 4y = 8z
⇒ 2x = 22y = 23z
⇒ x = 2y = 3z
⇒ y = `x/2 and z = x/3`
Now, `1/(2x) + 1/(4y) + 1/(8z) = 4`
⇒ `1/(2x) + 1/[(4x)/2] + 1/[(8x)/3] = 4`
⇒ `1/(2x) + 2/(4x) + 3/(8x) = 4`
⇒ `1/(2x) + 1/(2x) + 3/(8x) = 4`
⇒ `[ 4 + 4 + 3 ]/(8x) = 4`
⇒ `11/(8x) = 4`
⇒ x = `11/32`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(12^2 xx 75^-2 xx 35 xx 400)/(48^2 xx 15^-3 xx 525)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1