Advertisements
Advertisements
प्रश्न
Solve for x:
22x + 2x +2 - 4 x 23 = 0
उत्तर
22x + 2x +2 - 4 x 23 = 0
⇒ 22x + 2x+2 - 22 x 23 = 0
⇒ 22x + 2x . 22 - 22+3 = 0 ......(Using am x an = am+n)
⇒ 22x + 2x . 22 - 25 = 0
⇒ 22x + 2x . 4 - 32 = 0
Put 2x = t
So, 22x = t2
22x + 2x+2 - 32 = 0 becomes t2 + 4t - 32 = 0
⇒ (t + 8)(t - 4) = 0
⇒ t + 8 = 0 or t - 4 = 0
⇒ t = -8 = 0 or t = 4
⇒ 2x = -8 or 2x = 4
⇒ 2x = -23 or 2x = 22
Using the second equation 2x = 22, we get x = 2.
APPEARS IN
संबंधित प्रश्न
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`