Advertisements
Advertisements
प्रश्न
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
उत्तर
`root(4)root(3)(x^2)` = xk
⇒ `{(x^2)^(1/3)}^(1/4)` = xk
⇒ `(x^2)^(1/12)` = xk
⇒ `x^(2/12)` = xk
⇒ `x^(1/6)` = xk
⇒ k = `(1)/(6)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
Find x, if : 42x = `1/32`
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0