Advertisements
Advertisements
Question
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Solution
`root(4)root(3)(x^2)` = xk
⇒ `{(x^2)^(1/3)}^(1/4)` = xk
⇒ `(x^2)^(1/12)` = xk
⇒ `x^(2/12)` = xk
⇒ `x^(1/6)` = xk
⇒ k = `(1)/(6)`.
APPEARS IN
RELATED QUESTIONS
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : `[3^x]^2` : 3x = 9 : 1
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
p3 x p-2 = px
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1