Advertisements
Advertisements
Question
Solve : `[3^x]^2` : 3x = 9 : 1
Solution
`[3^x]^2` : 3x = 9 : 1
⇒ `[3^x]^2/3^x = 9/1`
⇒ `[3^x]^2 = 9 xx 3^x`
⇒ `[3^x]^2 = 3^2 xx 3^x`
⇒ `[3^x]^2 = 3^(x + 2)`
We know that if bases are equal, the powers are equal.
⇒ x2 = x + 2
⇒ x2 - x - 2 = 0
⇒ x2 - (2 - 1) x - 2 = 0
⇒ x2 - 2x + x - 2 = 0
⇒ x( x - 2 ) + 1( x - 2 ) = 0
⇒ ( x + 1 )( x - 2 ) = 0
⇒ x + 1 = 0 or x - 2 = 0
⇒ x = - 1 or x = 2.
APPEARS IN
RELATED QUESTIONS
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve for x : 9x+2 = 720 + 9x
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Solve for x:
1 = px
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1